WB gives you a nice little pantry in the Revel, but for some reason you only get 4 shelves and the shelving brackets are only about 60% of the whole height so you can't really put the shelving in "any" location. So, I replaced the brackets on the sides with 48" ones that went pretty much all the way. The mounting holes lined up with the original ones, so I didn't have to try to align them. I then made 3 extra shelves with some laminated shelving and some aluminum angle. Put some pads on them to snug 'em up so they don't rattle. I decided to add some lighting. I found a nice 12v LED light strip that had an adhesive backing. I mounted it to the backside of the door frame. I wired it up to a switch mounted on the door frame such that it goes on when the door opens. I hooked into the cabin lighting circuit found under the pantry. I think it's much better.
3 Comments
One of the very first things I did was to try to remove the tie down shackle from the garage. The owners manual shows how you push in the center button to release it, then you slide it out of the base. Sounds easy. I went to go that on ours and found WB had mounted the base in such a way as to capture the shackle so you couldn't remove it. Not only that, many of the screws were obviously over torqued. OK, so I removed the two screws that were in the way and found - they were too big. The head on the screw was too large to fully seat in the chamfer provided in the base. This lead them to stick up enough to foul the shackle. After a few minutes on the mill, I make the chamfer larger and went to go remount them. Unfortunately several of the screws had been stripped - they're sheet metal screws drilled directly into the floor, so if they're over torqued, they just strip out. I put some speed nuts on the back side to fix this. By the way, if you happen to loose the base piece under the flooring and then manage to push it so far you can't get it, you can use a vacuum to retrieve it. I duct taped some tubing on the end of my vacuum, stuck it under the flooring and in about a second had it back out. I also found the weather proofing that WB used - apparently Great Stuff Black - was sprayed all over, but not necessarily on the screw penetrations. Some Rustoleum hopefully will take care of that. So in summary, our brand new Revel I found a removable tie down I couldn't remove, which lead to finding the screws were too big, which lead to finding some were stripped, to finding some did not have any weather proofing. This was my first taste of WB Quality Control. More to come.
We purchased a 2021 Revel (4WD Camper Van on a Sprinter Chassis) with a sort of "why not" approach. Plus its a birthday present for my wife. We wanted something we could be self sufficient and both of us would be comfortable driving it. That meant a smaller vehicle. We were going to rent one first, but Lisa kinda went for this when she saw it.
I've never owned or used an RV before, so there is a steep learning curve. It turns out that although the Revel is a very nice and capable vehicle, the build quality is mediocre at best. It's been explained to me as a combination of, you get a lot for the price so somethings got to give the entire industry has this problem and WB isn't that bad you should just expect issues that you'll will have to deal with (more of a DIY vibe) It also turns out these things are a starting point. Most owners modify them in various ways to either fix design issues or configure it for their particular use. The list of changes, upgrades, modifications, accessories is endless. So with that, I'll probably post things I've done to the Revel. To be honest most of my ideas are from the Facebook Revel group. But I really don't like FB, so don't want to spend too much time dealing with it. I've been wanting to put in a garden for a while, but never had the motivation to actually get down to it. Funny how a little bit of GLOBAL PANDEMIC goes a long way in helping one get motivated. This isn't a very complex project, but it was fun. Plus I got to use my little tractor! My first task was to locate and design the basic garden idea. As our soil is filled (I mean it's packed) with river cobble - it's almost impossible to dig. Also I'm getting old enough - I don't want to bend over, so the solution was raised beds. I decided to build four out of redwood in a 4' x 8' configuration at about 24" deep. That ends up needing 9.5 cuft of potting soil. Once I had the basic sides built, I needed to assemble them in place. I'm not sure if this was important, but I left about 8" on each 4x4 to allow the sides to be "pinned" into the ground. This, of course, meant I had to dig 6 x 4 = 24 holes, 8" deep - in the correct location. That took a while. I needed to borrow a hammer drill to get down that deep! Once the boxes where built, I lined the bottoms with 1/4" hardware cloth for gophers. I installed PVC for water and ran irrigation control wires to each bed. I'm not sure I'll use them, but wanted them in place if I went that way. I got the soil delivered, then filled up the boxes So after a week of work, I was ready to plant. Fortunately, there's a nursery very close that had a lot of starts for sale. We went over there and picked up a bunch of stuff and stuck it in the ground. So far, it seems very happy! I had an old electric poultry fence that I've rigged up around the garden to keep the rabbits out.
Many years ago I started a project to monitor various systems around my house. I designed and built a system based on Arduinos, Python and MySQL. I placed various sensors all around my house, connected them with ethernet, and I can data log various things - like water and energy consumption, room temps, etc. Which brings us to today's fun. I live in a rural setting, so I have a well. As you might be aware, living in Northern California has it's ups and downs (like earthquakes, fire, drought, etc), and gives me the opportunity to worry about my very drought and population stressed aquifer. Many of my neighbors have their wells go dry in the last several years due to overpumping and poor water management. In fact my well went dry about 4 years ago and I was forced to drill a new, deeper one. However the old well was left in place. I was hoping it would perk up at some point. Roll forward to this year. I finally got around to have a sounding tube installed the old well. (A sounding tube is just a bunch of PVC pipe that runs in the bore from the surface down to the well pump. My sounding tube turned out to be 546 feet deep. I purchased a water depth sensor from Keller (Keller Acculevel). I've used these before and find them accurate and easy to use. The one I selected, has a RS-485/MODBUS output and needs a 12v source. The "problem" with this installation is the well head is down a hill and several hundred yards from my house. My other installs have had ethernet close enough, so I haven't had to deal with this before. I settled on using a wireless link of some type. I played around with some DIY LoRA radios and they just didn't have the range to make it reliably. So I looked for a more robust solution. I found an RS485 Transceiver (EByte E32-DTU) on eBay for around $25. (You need to purchase antennas separately.) I went with the 433MHz option as I figured that would have better range and be a bit less line of sight. I also found a wall wart that would accept 220v and output 12v. Since I've used them before I already had some Arduino code that worked (it's standard MODBUS stuff, so pretty straightforward). Here is the sensor with it's cable and the well head. The 1" cap for the sounding tube has been removed from the well head. I just lowered the sensor down the hole, then put the tail of the cable through conduit to my weatherproof box. And here's the conduit buttoned up. The sensor box consists of a 12v supply, the RS485 transceiver, and a tubed filled with desiccant to terminate the atmospheric balance tube. (You can't get any moisture down this tube or you'll get bad depth readings. ) I was lucky that the well electrical box had a 1 1/2" pipe fitting on the top I could mount my weatherproof box too. Here's one of my Arduino based nodes. This communicates with the well via the transceiver, decodes the MODBUS stream, converts it to my internal protocol and sends it out ethernet to my database. As you can see, this well is no longer dry, so I can plan to start using it!
(My well pump is sitting 546 below the surface, this is where the sensor sits. The water depth is showing as 246 feet, so the top of the water is around 300 feet below the surface.) I guess I need to complete the thread - it's done. I managed to fire it up, adjust the timing and carbs and put about 100 miles on it. No smoke, good power, no weird noises - it seems good. A few minor issues - I had a leak from the primary and the clutch wouldn't disengage fully (making finding neutral impossible). When I pulled it down, I found the infamous circlip behind the clutch basket deformed and out of position. Yes, I did only torque to 40ftlbs, but it still failed. When I replaced that, and the seal - the leak went away. I also found the neutral light switch was screwed in too far which also screwed up finding neutral. This adjustment seems kinda touchy. I think either my switch is going bad or the bump on the shift plate is worn. I managed to find a workable medium. All in all, I'm very happy with the bike and hope to get many miles out of it. UPDATE: Replaced the neutral switch and also opened up the tranny. I gently smoothed out the neutral light "bump" on shift selector plate and spent a lot of time with the switch adjustment. I also shimmed the Hyde shift pedal (it was kinda sloppy on its pivot shaft). Now it finds neutral better, but still not as nicely as my other '75. I suppose there's more "fettling" to do... Ever since I acquired a 4th axis and a Tool setter, my smaller VMC with a table area of only 20 x 16 started to get small. Once I had mounted the 4th axis and the tool setter - the working area was pretty cramped. I decided to get some sort of fixture plate that would allow me to mount the 4th axis off the table enough to get most of my working area back.
After looking around for a couple of years on eBay, and finding no joy for a used plate (If my mill happened to use Haas spacing - I might have found one). I did happen to see a listing for a new plate from Saunders Machine Works - saundersmachineworks.com. (They also run the NYC CNC website www.nyccnc.com that has lots of great info). It wasn't cheap, but was specific for my machine and was exactly what I wanted. I had great feedback from NYC CNC about some questions I had re: mounting, cad drawings, etc. and the plate arrived in about a week. It was nicely crated up and very exciting to receive. One thing that did come up - they sell plugs for all the holes so swarf won't get down in there. I misread the web page and didn't order enough for all the holes. (I asked SMW to clarify the info on the page so it's clearer how many you'll need.) All in all this is going to be a great upgrade to the mill, giving me many more set up options. Who knows maybe I'll start using dowel pins for alignment?!?! Since I mounted the vintage Hyde rear sets AND decided to delete the electric start components - I kinda got myself into a corner. The stock kick start lever fouls the Hyde foot peg such that you have to mount it rotated underneath the peg. This would severely limit the total throw you'd get to kick it over. I didn't feel that would be very successful. I just happened upon the RGM designed and manufactured folding kickstart (#050179 - based on a T160 design). In addition to being slightly longer (for more leverage), it also folded just perfectly to nestle in when folded and just clears the peg when out. It was made very nicely so, I think this solves the problem.
I needed to create a new wiring harness for the bike. I had several upgrades/alterations in mind:
I also wanted to use the original Norton wiring color scheme as much as possible. I obtained the request wire, bullet connectors and sleeves from Britishwiring.com Jere is my attempt the diagram. ![]() I first ran the wires on the bike in the approximate locations of everything. I left a lot of extra on each end and didn't terminate anything yet. It took several go rounds to make sure I had all the wires run in the routes I wanted. I also added some extra ground wires in for the headlight, head, frame and rear tail. Once I had the rough layout, I zip tied the thing together and removed it from the bike. I wrapped it in black harness tape and terminated with heat shrink. Then I remounted the loom on the frame and started cutting things to length and terminating. I slowly worked through the brake lights, head lights, indicator lights, turn signals (which took a while since I had to fabricate the mounts), and the ignition.
I forgot to take pics of when I wrapped it and installed it. Anybody into Commandos will tell you that the bike was apparently built around the horn. The stock location is deep in the center of the bike, difficult to get to - not the greatest place for a horn to make sound. My original horn ended up being bad, so I needed to replace it. Further the original Lucas horn was probably everything Lucas thought it should be, which as it turns out, is pretty much the same as how they designed and built everything. So I wanted to upgrade to a pair of Fiamm Freeway Blasters located in a more strategic position .I also needed a place to mount my new fuse block, the Fuzeblocks FZ-1. I decided to mount all this stuff aft the air cleaner, but in front of the battery. My first goal was to model the space in Fusion 360, so I could design a way to get everything located. Once I had that, I designed a sheet metal mount. It took about 5 iterations to get it to work. Once I had a design, I used Fusion's sheet metal tools to create an unfolded 1:1 plan of the part. I glued this to a piece of sheet metal, then cut and bent it along the lines. Once I had it bent up, I welded it together and painted it. Everything pretty much fit as I hoped it would. Here's the thing partially wired. In order to mount it, I welded a could of pieces of angle to the battery tray and then attached some captive nuts to be used with some horizontal bolts to secure the horn mount (you can see a couple of slots in the picture above - bottom of the front rail). So the horn mount slips down on top of the rails and 4 bolts are inserted horizontally to secure it. And here it is mounted up. I'm pretty happy with the way everything ended up. The horn relay is a bit cramped, but normally not a service item. Now on the the next part of the project - the wiring harness!
|
Categories
All
Archives
February 2022
|